
.

,

ABSTRACT

cfhaMa~
QiwWatdn  Coverage Analysis

Matiin W. Lo
Jet Propulsion Laboratory

California Institute of Technobgy
Pasadena, CA 91109

mwlr@trantor.jpL  nasa.gov

The design of sateliite constellations require an un-
derstanding of the dynamic global coverage provided

* + by the constellations. Even for a small constellation
with a simple circular orbit propagator, the combina-
torial nature of the analysis frequently renders the
problem intractable. Particularly for the initial design
phase where the orbital parameters are still fluid and
undetermined, the coverage information is crucial to
evaluate the performance of the constellation design.
We have devebped a fast and simple algorithm for

determining the global constellation coverage dy-
namically using image processing techniques. This
approach provides a fast, powerful and simple meth-
od for the analysis of gbbal  constellation coverage.

1. INTRODUCTION

Ever since the first satellites entered orbit, people
have been concerned with their coverage. When can
we observe the satellite from a point on the ground?
What is the best bcation for a ground station? With
the advent of satellite constellations, the complexity
of the coverage probfem  increased cornMnatonally.
Even for simpfe, highiy symmetric constellations, cov-
erage questions are not easily answered. Generally,
the algorithms are not hard, it’s just that the problems
are time-varying and there are so many things to
keep track of and to compare. As a resuft,  pfanners
rarely are able to obtain global system performance
estimates that are rigorous and meaningful. What-if
studies are diffiwlt to perform if at all possibte.

The difficulty of static discrete counting problems,
atso known as cambfnatorlos,  is well known; for ex-
ampfe, the traveling saiesman probfem or the four
color problem. Coverage analysis is inherently diffi-
cuft  because It is a dynamic infinitesimal “counting
problem”. One might think of this as “inthitesimai
combinatorics”. The idea of infinitesimal counting
suggests that measure theory should be applicable to
wverage  analysis. This in turn suggests that aver-
aging theory may be used to handle the dynamic
wmbinatorfcs.  These mathematical methods are by

no means difficult, but may not be familiar to this
wmmunity.  Nevertheless, they are conceptuatty  sirn-
ple and provide rigorous metrics for gbbal system
performance which are easy to apply.

We present two measure-theoretic methods for gb-
bal coverage analysis in this paper which are geo-
metric in nature and simple in concept. By simpie we
mean the resulting algorithms are easier to imple-
ment than the standard btute-force  approach which is
computationaiiy  and data intensive. For our purpos-
es simply consider “measure” as a measure of area
or volume. Mathematically, we mean the Lebesgue
measure on the plane and 3- dimensional space.

The first method we call “Vtsual  Calcuius”  because it
is based on the amputations associated with the vi-
sualization of the coverage problem. We demonstrate
this method on the global performance of a bistatic
SAR (synthetic aperlure radar) system with a doubie
constellation. In this analysis, in addition to providing
the gfobal  coverage metric for the system, our meth-.
od also provides the performance anafysis  of this new
SAR concept. It clearly demonstrates the power of
computer visualization for anaiytic  purposes.

The second method is an application of ergodic the-
ory to the satellite view perfod problem: Given a fixed
point on the ground (such as a station or a user), how
frequently is the satellite in view of this point on aver-
age? The standard approach to this question Is to -

compute the actual view periods from propagating
the sateilite orbit with at least J2 perturbation
assumed. Suppose now we wish to compare the cov-
erage of a mission set of over 100 different orbits  for
20 years. FW pfanning purposes, most of the *teW@ ‘
orbits are ill defined. The combination of possibilities
can quickly make this probfem intractable, especially
if the ground efement is mobile. The amount of raw
vle~ perfod data generated abne is conskfefabfe.
Add to this the calculations of the statistics such as
view period conflicts, the combinatorial problem
quickly becomes intractable. Our approach, using er-
godic theory, reduces this problem to sofving definite
integrals which is easily accomplished in packages
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such as Mathematical in just a few seconds. No large
data set, no orbit propagation, but rigorous statistics
and metrics.

2. THE VISUAL CALCULUS

The coverage of the 2-sphere by satellites is the key
question for satellite coverage anaiysis.  Figure 1 de-
fines the satellite to ground station visibility geometry
where we have assumed a minimum elevation angle
alfa. Note, we use the term “ground station” loosely to
mean any element on the ground which wishes to
view the satellite. The fiire shows that when the sat-
ellite groundtrack enters the circle of radius theta
about the ground station, it is in view of the station.
We call this circle the station mask. One way to visu-
alize the coverage of a complex constellation is to
piot the station masks on the gbbe with some map
projection or in 3D. This enables the analyst to quick-
ly get a sense of the performance of the constellation
from the geometry.

It is well known that most projections greatly distorts
the area or measure of the sphere. For example, in
the cylindrical projection, the polar regions are artifi-
cially enlarged. In order to provide the anafyst with a
better sense of the coverage, an equal-area projec-
tion such as the sinusoidal or the Mollweide projec-
tion can be used. In this paper, we use the sinusoidal
projection for simpliaty to demonstrate this technique.

An equal area projection is also known as a measure-
preserving transformation. In other words, it pre-
serves the area of the sphere onto the plane. Given
any region in the sinusoidal map, U we transform it
back to the sphere, we shoukf get a region with ex-
actly the same area. In particular, this is true at the
pixel level, ignoring the discretization  error for the
moment. Therefore, we can compute area simpfy  by
counting pixels.

What are the advantages of this approach? This pro-
vides a very simple aigcwithm  for the discretizatbn  of
the sphere and for conputing coverage.

To compute the coverage, for each instant in time,
one simply draws the instantaneous Wnb of the pfanet
with an minimum elevaiion  angle of atfa. One then
perlorms a polygon fill centered on the sateliite  nadir
for the limb circle (radius theta) wh~h is also the sta-
tion mask at the nadir. This represents all points of
the ground which can see the satellite. -Notice, no
visibility verification is necessary. Suppose we add 1

for each pixel in the fimb arcle of the satellite and add
O everywhere else. Suppose we do this for each
satelfite.  The resulting map provides a tabulation of
the instantaneous coverage of the constellation. The
value of each pixel is precisely the number of satel-
lites in view at that point on the map. In this way, not
only have we quickly generated the coverage infor-
mation, but we have also generated an image which
can be displayed for visuaiizatbn purpose by appro-
priately defining the cobr map to reffect  the number
of satellites in view at each point.

Now begins the fun and games we can play with
these data. Let l(t) denote the coverage image pro-
duced in the above fashion at the t-th time step.
Define

total(S(l)) = total number of pixeis in image I where
the statement S(1) is true.

Then total(i(t)  > O) provides the total number of pixels
>0 in the image i(t). This counts the number of points
on the map which can see the satellite. Let N denote
the total number of pixels of the map. Then, since we
are using an equal area projection,

C(n) = 100x total(l(t)>O)/N

gives the percentage of total coverage at time t.

Now suppose we wish to compute the total coverage
over iand. Let LAND denote the image of the map
obtained by setting the pixels over land to 1 and over
sea to O. Similarfy,  we can define SEA to be the {0,1}
matrix for the oceans. Let A*B denote pixel-wise mul-
tiplication,  i.e. if we think of the images A and B as
matrfces,  this means:

NB(i,j) = A(i,j) ● B(i,j).

Then, l(t)*LAND  gives the coverage over fand, and
l(t)* SEA gives the coverage over sea. For the cover-
age over any particular region of the planet, simpfy
create the (0,1 }- image, R, for the region (where R is
1 over the region and O otherwise). l(t)*R defines the
coverage over the region defined by R.

To compute the total coverage from time 1 to n,
compute

c = 100*tOtal({l(l)  +1(2)+ . . . l(t)} > 0)/N
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. which defines the total percent of the planet covered
by the constellation over time t. To compute the total
coverage of the planet by 3 satellites simultaneously,
compute

C3 = 100*total(l(t) > 2)/N.

For a few satellites, these calculations are easily
computed within a package such as IDL.  But for larg-
er constellations, custom codes are required, but they
are easiiy implemented. Care must be taken with the
image resolution and transformations. To pxform
the calculus above, all images must be of the same
resolution. Resolution can be bst during projection
transformations since they are “not reversible” from
the pixel point of view.

3. SARCON: APPLICATION OF MEASURE Pre-
serving MAPS TO CONSTELLATION DESIGN

This method can be apptied to instrument footprints
of greater complexity than just the nadir looking limb
described above. In this section we present an ap-
plication to the bistatic  SAR (synthetic aperture radar)
defined by a double constellation. For this system,
the first constellation emits the signals while the sec-
ond constellation receives the signals. In general, the
emitters are cheaper to buitd and the receivers are
much more expensive. By dividing the two, one can
provide 50 emitters and 4 receivers, for example,
thereby creating an efficient and cost-effective SAR
with global coverage. However, typical SARS frown
to date have both emitter and receiver on the same
sateltite.  in fact, the scatter geometry provided by
this configuration is essential. When the path of the
receiver sateiiite  is orthogonal to the emitter satellite,
the geometry for the SAR is very poor and the signais
are greatly degraded and are useless.

We developed a rapid prototype, SARCON (SAR
Constellation Analysis Tool), to analyze this system
and to demonstrate the utility of the Visual Calculus.
SARCON prwkfecf  the first gbbal visual verification
of the performance of the bistatic  SAR. FQ. 2 is an
image of an instantaneous coverage from SARCON
using a double constellation consisting of 4 satellites
each. We refer to the panels numbered 1 through 4,
starting from the bottom ieft going clockwise, Panel 1
provides the raw coverage map without SAR
performance. Panel 2 provides the intersection of the
footprints where SAR calculations are to be made. In
this figure, the “timde data” are also pbtted.  Panel 4
provides the four SAR pedormance  indices: Resolu-
tion,  SNR, Area, and Time. Panel 3, in the right top

corner, provides the image of the pass/fail index ob-
tained from the sum of the indices of Panel 3. Here
green means pass and red means fail.

As a rapid prototype, little care was used in the nu-
merical and image processing algorithms in the
development of SARCON. Aside from total coverage
between user specified latitudes, no other analysis
was provided in the current version which was mainly
used as a first order proof of concept for the bistatic
SAR. Once the coverage information is obtained, the
statistical analysis outlined above can be used to ob-
tain a great deal of information and metric on the
performance of the system. A second generation tool
using a distributed architecture with cluster comput-
ing is currently under development to provide just this
kind of analytical capabilities. A multiresolution  ap-
proach using wavelets to model the sphere is also
being considered.

The performance of the bistatic SAR is extremely
complicated to analyze. The SARCON visualization
provided a quick, intuitive, and quantitative evaluation
not only of the bistatic  SAR, but of the entire system.
The importance of visualization for the analysis of
complex geometric problems cannot be over
emphasized. The use of measure preserving projec-
tions can further leverage the visualization process to
provide quantitative information such as in the bistatic
SAR probiem.

4. CONCLUSIONS

This paper presented a new approache to coverage
anaiysis which yields quantitative measures of the
constellation performance. The use of a measure
presewing map projection enabled the use of simple
image processing techniques to compute the cover-
age of complex missions while providing the visual-
ization at the same time. The SARCON prototype
demonstrated the utility and power of this concept..
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Figure 2. ~ Coverage Images


